Skip to main navigation menu Skip to main content Skip to site footer

Characteristics of advertising performance and the use of social media analytics: southern Brazil scenario

Abstract

Purpose – With the advance of the use of social media by consumers and brands, an analysis of data coming from such means seems to have become essential for public agencies to achieve good performance in their campaigns. This research explores the characteristics of advertisers operating in southern Brazil as well as the scenario of advertising agencies facing the use of Social Media Analytics (SMA) data.

Theoretical framework – The characteristics of the advertiser, the advertising agencies, and the use of social media analysis were used.

Design/methodology/approach – This is a quantitative and descriptive study, operated by collecting primary data through an online survey applied to 92 advertising professionals working in different southern Brazilian agencies. Descriptive and variance analysis (ANOVA) was performed using the SPSS® software.

Findings  The results show the profile of the advertiser and the agencies as well as indicate a strong use of conventional analysis tools. Agencies lack the people, research and investment in collecting data on complex platforms and software such as big data data collection.

Research, Practical & Social implications – Based on the established findings, future researchers may wish to investigate other tools in order to update the field. Practical implications converge for greater investment by social media managers in big data tools and learning, as their use can significantly impact the professional's performance in the digital environment.

Originality/value – Few studies have investigated Brazilian advertisers and agencies. The findings can be seen as a preliminary step towards a greater understanding of activities related to advertising, especially in the digital environment. The study is also original because it tested a scale of use of MAS tools, which strengthens the field and expands the specific knowledge inherent to advertising activity in the digital environment.

Keywords

Advertisers, Agencies, Social Media Analysis, Big Data

PDF (Español (España))

References

  1. Cenp. (27 de Novembro de 2018). Conselho Executivo de Normas Padrão. Acesso em 27 de Novembro de 2018, disponível em Conselho Executivo de Normas Padrão: https://sistemas.cenp.com.br/WebCENPConsulta/ConsultaWeb.aspx#
  2. Cooper, D. R., & Schindler, P. S. (2016). Métodos de pesquisa em Administração (Vol. 12). (I. D. Abreu, Trad.) Porto Alegre, RS, Brasil: AMGH.
  3. Cunha, M. R., & Machado Júnior, E. V. (2011). Revisitando o papel atual do publicitário: publicitário ou gestor de comunicação? Estudos – Vida e Saúde, 38(4), pp. 755-769.
  4. DesignRush, S. (19 de October de 2019). The Best Social Media Management Tools For Posting, Scheduling, Analytics, Monitoring & Listening, According To DesignRush. Fonte: Regional Business News: http://web.b.ebscohost.com/ehost/detail/detail?vid=0&sid=86820c78-ab70-4fb1-8345-5b1d9c8f86f1%40pdc-v-sessmgr06&bdata=Jmxhbmc9cHQtYnImc2l0ZT1laG9zdC1saXZl#AN=201910100350PR.NEWS.USPR.UN00235&db=bwh
  5. Elgendy, N., & Elragal, A. (September de 2014). Big Data Analytics: A Literature Review Paper. Perner P. (eds) Advances in Data Mining. 8557, pp. 214–227. Cham: Springer.
  6. Hair, J. R., Black, W. C., Anderson, R. E., & Tatham, R. L. (2009). Análise Multivariada de Dados (6 ed.). (A. S. Sant'Anna, Trad.) Porto Alegre: Bookman.
  7. Jobs, C. G., Aukers, S. M., & Gilfoil, D. M. (2016). The impact of big data on yout firms marketing communication: a framework for understanding the emerging marketing analytics industry. Academy of Marketing Studies Journal, pp. 1-12.
  8. Jun, L., & Peng, Z. (2013). Mining Explainable User Interests from Scalable User Behavior Data. Procedia Computer Science, 17, pp. 789-796.
  9. Kantar. (10 de Abril de 2021). Tendências e previsões de mídia 2021. Fonte: Kantar Ibope Mídia: https://www.kantaribopemedia.com/wp-content/uploads/2020/11/2021-Media-Trends-and-Predictions- Report-PT.pdf
  10. O'Barr, W. M. (2008). Advertising in Brazil. Advertising & Society Review, 9(2).
  11. Operandi. (03 de 03 de 2021). Operandi. Fonte: Censo Agências 2021.: https://www.operand.com.br/pesquisa-censo- agencias
  12. Paquette, H. (2013). Social Media as a Marketing Tool: A Literature Review. Major Papers by Master of Science Students, pp. 1-27.
  13. Paquette, H. (2013). Social Media as a Marketing Tool: A Literature Review. Major Papers by Master of Science Students, pp. 1-27.
  14. Parker, J., Ang, L., & Koslow, S. (2018). The Creative Search for an Insight in Account Planning: An Absorptive Capacity Approach. Journal of Advertising, pp. 1-18.
  15. Pesavento, F. (2016). Mercado Publicitário no Brasil e seus Determinantes Macroeconômicos: um Estudo a partir do Princípio da Constância Relativa. Revista Análise Econômica, 34(66), pp. 313-341.
  16. Rendeiro, F. F. (28 de Novembro de 2018). Mercado publicitário: transformações na contemporaneidade . Mercado publicitário: transformações na contemporaneidade . Brasil.
  17. Repiso, R., Berlanga, I., Ramos-Ábalos, E. M., Llorente-Barroso, C., & García-García, F. (2018). La industria publicitaria iberoamericana caracterizada desde un meta estudio de los anuncios premiados en festivales. Palabra Clave, 21(2), pp. 524-549.
  18. Sant´Anna, A., Júnior, I. R., & Garcia, L. F. (2016). Propaganda: teoria, técnica e prática. São Paulo, 2016. (Vol. 9). São Paulo, Brasil: Cengage Learning Brasil .
  19. Tamanaha, P. (2011). Planejamento de mídia: teoria e experiência (2 ed.). São Paulo, SP, Brasil: Pearson Prentice Hall.