Fractals between “La nuit étoilée”, “# 8”, and an eglantine rose: A linguistic insight in transdisciplinarity
Abstract
In this essay we first aim to interlace certain structural features between two masterpieces, van Gogh’s “La nuit étoilée” (1889), exhibited at the Musée d’Orsay, and Pollock’s “#8” (1949), currently shown at the Neuberger Museum, in the State University of New York. Secondly, we apply the same features to analyze a natural flower, the eglantine rose (rosa rubiginosa) that usually grows wild in temperate and subtropical climates in Europe as well as in Asia. In order to do so, we draw on basic concepts from chaos theory (Mandelbrot 1982): From fractals, iteration and selfsimilarity. We also resort to Henri Poincaré three-body theory (2007), and to Nicolescu’s manifesto of transdisciplinarity (2002). At the same time we address a series of recent research articles from the fields of physics and mathematics conducing us to find differences and resemblances between the natural flower and both canvases. Finally, we suggest that the intertwining between art, nature and mathematics can also be realized by means of visualizations, metaphors, basic linguistic concepts and etymologies ¾a new bridge between humanities, art and sciences.
Keywords
fractals, visual art, nature, metaphors, linguistics, transdisciplinarity
References
- Aragon, J. L., Naumis, G. G., Bai, M., Torres, M., & Maini, P. K. (2008).Turbulent
- Luminance in Impassioned van Gogh Paintings. Journal of Mathematical Imaging and Vision, 30: 275-283. DOI: 10.1007/s10851-007-0055-0.
- Bally, A. (1950). Dictionnaire Grec–Français. Paris: Hachette.
- Braun , T. E.D. & McCarthy, J. A. (Eds.) (2000). Disrupted Patterns. On Chaos and Order in the Enlightenment. Amsterdam: Rodopi.
- Briggs, J. & Peat, F. D. (1990). Turbulent mirror: An illustrated guide to Chaos Theory and the Science of Wholeness. New York: Harper Perennial.
- Coddington, J., Elton, J., Rockmore, D., & Wang, Y. (2008). Multifractal analysis and authentication of Jackson Pollock paintings. SPIE Proceedings. The International Society for Optical Engineering. Vol. 6810-13, V. 2: 1-12. Retrieved from https://scholars.opb.msu.edu/en/publications/multifractal-analysis-and-authentication-of-jackson-pollock-paint-3.
- Darbellay, F. (Ed.). (2012). La circulation des savoirs: interdisciplinarité, concepts nomades, analogies, metaphors. Pieterlen & Bern: Peter Lang AG.
- de Saussure, F. (1995). Cours de Linguistique générale. Paris: Payot & Rivages.
- Deleuze, G. & Guattari, F. (1980). Capitalisme et schizophrénie 2. Mille Plateaux. Paris: Les í‰ditions de Minuit.
- Derrida, J. (1979). L’écriture et la différence. Paris: Essais.
- Gaffiot, F. (1934). Dictionnaire Latin-Français. Paris: Hachette.
- Lupasco S. (1987). Le principe d'antagonisme et la logique de l'énergie - Prolégomí¨nes à une science de la contradiction. Monaco: Le Rocher.
- Mandelbrot, B. (1982). The fractal Geometry of Nature. San Francisco: Freeman.
- Morin, E. (1989). La méthode. La nature de la nature. Paris: Seuil.
- Nicolescu, B. (2002). Manifesto of Transdisciplinarity. New York: State University of New York.
- Poincaré, H. (2007). Science and Method. New York: Cosimo Classics.
- Prigogine, I. & Stengers, I. (1984). Order out of Chaos. New York: Bantam.
- Reas, C., & Fry, B. (2007). Processing: a programming handbook for visual designers and artists (No. 6812). MIT Press.
- Serres, M. (1992). Hermí¨s III. Paris: Les í‰ditions de Minuit.
- Taylor, R. P., Micolich, A. P., & Jonas, D.(1999). Fractal Analysis of Pollock’s drip paintings. Nature 399 (6735): 418-429.
- Taylor, R. P., Guzman, R., Martin, T. P., Hall, G.D.R., Micolich, A. P., Jonas, D.,
- Scannell, B. C., Fairbanks, M. S., Marlow, C. A., (2007). Authenticating Pollock paintings using fractal geometry. Pattern Recognition Letters. Amsterdam: Elsevier. 28: 695-702.
- Zadeh, L. (1975). Fuzzy logic and approximate reasoning. Synthese. 30: 407–428.
- Zheng, Y., Nie, X., Meng, Z., & Feng, W. (2014). Layered Modeling and generation of Pollock’s drip style. The Visual Computer. Springer. DOI 10.1007/s00371-014-0985-7.