Skip to main navigation menu Skip to main content Skip to site footer

Video on Demand in Spain: Elements which Influence the Adoption and Use of Video on Demand Systems.

Reputación, transparencia y nuevas tecnologías

Abstract

Video on demand systems are an actual technological innovation and they are growing faster. The goal of this research is to find the factors which influence behavioral intention. A non-probability method was used, surveying 168 university students from University of Salamanca and University Rey Juan Carlos of Madrid. The results show that the degree of adoption is medium-high and the factors that influence more in behavioral intention are hedonic motivation and habit, verifying partially the UTAUT2 model.

Keywords

Technology, Video on demand, Online Videoclub, Digital Television, New Technologies, Behavioral Intention

PDF (Español (España))

References

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior & Human Decision Processes, 50(2), 179–211.
AMETIC (2017). Transformación digital: Visión y propuesta de AMETIC. Recuperado de: http://ametic.es/es/publicaciones/transformaci%C3%B3n-digital-visi%C3%B3n-y-propuesta-de-ametic-0
Antolín Prieto, R. (2012). YouTube como paradigma del vídeo y la televisión en la web 2.0 (Doctoral dissertation, Universidad Complutense de Madrid). Recuperado de: http://eprints.ucm.es/16111/1/T33817.pdf
Arcila, C., Calderín, M., Aguaded, J. I. (2015). Adoption of ICTs by communication researchers for scientific diffusion and data analysis. El profesional de la información, vol.24(5), pp. 526-536.
Austberry, D. (2005). The Technology of Video & Audio Streaming, Elsevier Ltd, Kidlington.
Brown, S. A., y Venkatesh, V. (2005). “Model of Adoption of Technology in the Household: A Baseline Model Test and Extension Incorporating Household Life Cycle”, MIS Quarterly (29:4), pp. 399-426.
Castrillo, D. (2012). El impacto del video online en la industria de la televisión de pago en España y en Estados Unidos: un modelo comparativo (Doctoral dissertation, Universidad Complutense de Madrid). Recuperado de: http://eprints.ucm.es/16145/
Chang, I. C., Hwang, H. G., Hung, W. F., y Li, Y. C.(2007). “Physicians’ Acceptance of Pharmacokinetics-Based Clinical Decision Support Systems”, Expert Systems with Applications (33:2), pp. 296-303.
Compeau, D. R., y Higgins, C. A. (1995). Computer Self-Efficacy: Development of a Measure and Initial Test. MIS Quarterly, 19(2), 189-211.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.
Davis, F. D., Bagozzi, R. P., y Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-339.
Davis, F. D., Bagozzi, R. P., y Warshaw, P. R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Applied Social Psychology, 22(14), 1111- 1132.
Dunleavy, T. (2010). It's Not TV: Watching HBO in the Post-Television Era, Marc Leverette, Brian L. Ott and Cara Louise Buckley (2008) New York: Routledge, 256 pp., ISBN 978-0-415-96038-0, Paperback, 21.99. International Journal of Digital Television, 1(3), 385-389.
Faria, L. E. L., Giuliani, A. C., Cavazos-Arroyo, J., y Pizzinatto, N. K. (2016). Moderando entre géneros: una evaluación de aceptación y uso de Internet en smartphones por medio del modelo UTAUT2. Cuadernos del CIMBAGE, (16), 29-55.
Fishbein, M., y Ajzen, I. Belief, (1975). Attitude, Intention and Behavior: An Introduction to Theory and Research. Addison-Wesley, Reading, MA.
Guardia, M. L. G., y Estupiñán, O. E. (2011). Historia y transformación de la televisión de pago en España. Un recorrido tecnológico desde el vídeo comunitario hasta el vídeo online. Vivat Academia, (117), 91-110. Recuperado de: http://pendientedemigracion.ucm.es/info/vivataca/numeros/n117/PDFs/Varios4.pdf
Gupta, B., Dasgupta, S., y Gupta, A. (2008). “Adoption of ICT in a Government Organization in a Developing Country: An Empirical Study”, Journal of Strategic Information Systems (17:2), pp. 140-154.
Igartua, J. (2006). Métodos cuantitativos de investigación en comunicación. Barcelona: Bosch.
Jiménez Zaera, H. (2015). Observatorio de piratería y hábitos de consumo de contenidos digitales 2015. GFK. Recuperado de: http://lacoalicion.es/wp-content/uploads/ejecutivo-observatorio-2015-vd-es.pdf
Kemp, S. (2017). Digital, Social and Mobile in 2017. We are social, January 2017 Recuperado de: https://wearesocial.com/blog/2017/01/digital-in-2017-global-overview
Limayem, M., Hirt, S. G., y Cheung, C. M. K. (2007). “How Habit Limits the Predictive Power of Intentions: The Case of IS Continuance”, MIS Quarterly (31:4), pp. 705-737.
López Ponce, Marcela (2015). Adopción y uso de medios digitales por parte de los jóvenes del SENA de la Región Caribe Colombiana. (Doctoral dissertation, Universidad del Norte, Colombia).
Neufeld, D. J., Dong, L., y Higgins, C. (2007). “Charismatic Leadership and User Acceptance of Information Technology,” European Journal of Information Systems (16:4), pp. 494-510.
Ojer, T., y Capapé, E. (2012). Nuevos modelos de negocio en la distribución de contenidos audiovisuales: el caso de Netflix. Revista Comunicación, 1(10), 187-200. Recuperado de: https://dialnet.unirioja.es/servlet/articulo?codigo=3954673
Pearce, Nick (2010). “A study of technology adoption by researchers. Web and e-science infrastructures to enhance research”. Information, communication & society, vol.13(8).
Rogers, Mark C.; Michael Epstein; Jimmie L. Reeves (2002). The Sopranos as HBO brand equity. The art of commerce in the age of digital reproduction. En: Lavery, David (ed.). This thing of ours. Investigating“The Sopranos”. New York: Columbia University Press, p. 42-57.
Rogers, E.M. (2003). Diffusion of Innovations. Fifth Edition.
Román Portas, M. (2012). TDT en España y el dividendo digital. Estudios sobre el mensaje periodístico, 18, 801-809. Recuperado de: https://dialnet.unirioja.es/servlet/articulo?codigo=4215667
Shapiro, M. A. (2002). Generalizability in communication research. Human Communication Research, 28(4), 491-500.
Suárez Rodríguez, F. J. (2014). Antena 3 ante el desafío online: desarrollo estratégico y análisis prospectivo (Doctoral dissertation, Universidad Complutense de Madrid). Recuperado de: http://eprints.ucm.es/24603/
Taylor, S., y Todd, P. A. (1995). Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research, 6(4), 144-176.
Venkatesh, V. y Davis, F. D. (2000) “A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies,” Management Science (45:2), pp. 186-204.
Venkatesh, V., Morris, M. G., y Ackerman, P. L. (2000). A Longitudinal Field Investigation of Gender Differences in Individual Technology Adoption Decision Making Processes. Organizational Behavior and Human Decision Processes, 83(1), 33-60.
Venkatesh, V., Morris, M. G., Davis, G. B., y Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. Recuperado de: http://eli.johogo.com/Class/p25.pdf
Venkatesh, V.; Thong, James Y.L. y Xu, Xin. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology, MIS Quarterly, (36: 1) pp.157-178. Recuperado de: http://aisel.aisnet.org/cgi/viewcontent.cgi?article=3014&context=misq
Virino, C. C. (2011). No es televisión, es HBO: La búsqueda de la diferencia como indicador de calidad en los dramas del canal HBO. Zer-Revista de Estudios de Comunicación, 11(21). Recuperado de: http://www.ehu.eus/ojs/index.php/Zer/article/view/3714/3344
Warshaw, P. R. (1980). A New Model for Predicting Behavioral Intentions: An Alternative to Fishbein. Journal of Marketing Research, 17(2), 153-172.
Yi, Y., Jackson, D., Park, J. S., y Probst, J. C. (2006). “Understanding Information Technology Acceptance by Individual Professionals: Toward an Integrative View,” Information & Management (43:3), pp. 350-363.